270 research outputs found

    Reliability approach for safe designing on a locking system

    Get PDF
    The aim of this work is to predict the failure probability of a locking system. This failure probability is assessed using complementary methods: the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) as approximated methods, and Monte Carlo simulations as the reference method. Both types are implemented in a specific software [Phimeca software. Software for reliability analysis developed by Phimeca Engineering S.A.] used in this study. For the Monte Carlo simulations, a response surface, based on experimental design and finite element calculations [Abaqus/Standard User’s Manuel vol. I.], is elaborated so that the relation between the random input variables and structural responses could be established. Investigations of previous reliable methods on two configurations of the locking system show the large sturdiness of the first one and enable design improvements for the second one

    Evaluation of methods for detecting human reads in microbial sequencing datasets

    Get PDF
    Sequencing data from host-associated microbes can often be contaminated by the body of the investigator or research subject. Human DNA is typically removed from microbial reads either by subtractive alignment (dropping all reads that map to the human genome) or by using a read classification tool to predict those of human origin, and then discarding them. To inform best practice guidelines, we benchmarked eight alignment-based and two classification-based methods of human read detection using simulated data from 10 clinically prevalent bacteria and three viruses, into which contaminating human reads had been added. While the majority of methods successfully detected >99 % of the human reads, they were distinguishable by variance. The most precise methods, with negligible variance, were Bowtie2 and SNAP, both of which misidentified few, if any, bacterial reads (and no viral reads) as human. While correctly detecting a similar number of human reads, methods based on taxonomic classification, such as Kraken2 and Centrifuge, could misclassify bacterial reads as human, although the extent of this was species-specific. Among the most sensitive methods of human read detection was BWA, although this also made the greatest number of false positive classifications. Across all methods, the set of human reads not identified as such, although often representing 300 bp) bacterial reads, the highest performing approaches were classification-based, using Kraken2 or Centrifuge. For shorter (c. 150 bp) bacterial reads, combining multiple methods of human read detection maximized the recovery of human reads from contaminated short read datasets without being compromised by false positives. A particularly high-performance approach with shorter bacterial reads was a two-stage classification using Bowtie2 followed by SNAP. Using this approach, we re-examined 11 577 publicly archived bacterial read sets for hitherto undetected human contamination. We were able to extract a sufficient number of reads to call known human SNPs, including those with clinical significance, in 6 % of the samples. These results show that phenotypically distinct human sequence is detectable in publicly archived microbial read datasets

    Genomic islands: tools of bacterial horizontal gene transfer and evolution

    Get PDF
    Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteri

    Short-term genome stability of serial Clostridium difficile ribotype 027 isolates in an experimental gut model and recurrent human disease

    Get PDF
    Copyright: © 2013 Eyre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedClostridium difficile whole genome sequencing has the potential to identify related isolates, even among otherwise indistinguishable strains, but interpretation depends on understanding genomic variation within isolates and individuals.Serial isolates from two scenarios were whole genome sequenced. Firstly, 62 isolates from 29 timepoints from three in vitro gut models, inoculated with a NAP1/027 strain. Secondly, 122 isolates from 44 patients (2–8 samples/patient) with mostly recurrent/on-going symptomatic NAP-1/027 C. difficile infection. Reference-based mapping was used to identify single nucleotide variants (SNVs).Across three gut model inductions, two with antibiotic treatment, total 137 days, only two new SNVs became established. Pre-existing minority SNVs became dominant in two models. Several SNVs were detected, only present in the minority of colonies at one/two timepoints. The median (inter-quartile range) [range] time between patients’ first and last samples was 60 (29.5–118.5) [0–561] days. Within-patient C. difficile evolution was 0.45 SNVs/called genome/year (95%CI 0.00–1.28) and within-host diversity was 0.28 SNVs/called genome (0.05–0.53). 26/28 gut model and patient SNVs were non-synonymous, affecting a range of gene targets.The consistency of whole genome sequencing data from gut model C. difficile isolates, and the high stability of genomic sequences in isolates from patients, supports the use of whole genome sequencing in detailed transmission investigations.Peer reviewe

    Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States

    Get PDF
    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel “vaccine escape recombinant” pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term

    Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution

    Get PDF
    Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains

    Hybrid Vibrio vulnificus

    Get PDF
    Hybridization between natural populations of Vibrio vulnificus results in hyperinvasive clone

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    rRNA sequencing in molecular microbiological diagnosis of bacterial infections in the autopsy setting

    No full text
    Diagnosing the aetiology of infectious diseases at autopsy, such as pneumonia, meningitis, sepsis or SUDI, is complicated due to issues including post mortem contamination, difficulty culturing fastidious organisms and subjective interpretation of polymicrobial cultures. Death of organisms may also occur post mortem, especially if antibiotics were given to the patient, but residual DNA from non-viable organisms, amenable to molecular detection, may remain. The 16S rRNA gene is present in all bacteria with conserved and hyper-variable regions along its length, allowing amplification and sequencing of all bacterial 16S sequences present in a sample. 16S sequencing offers potential advantages over culture-based diagnostics and is increasingly used in clinical practice. It has been used to identify bacteria in formalin fixed paraffin embedded (FFPE) surgical pathology specimens but its use has not been reported in autopsy diagnosis. This talk will summarise a study aimed to assess the utility of 16S sequencing as an adjunctive microbiological test in the autopsy. Our preliminary work has used post mortem lung tissue samples from children dying with pneumonia as part of the Pneumonia Etiology Research for Child Health (PERCH) project. The technique has identified known pathogens in some cases and provided additional diagnostic information in others. The presentation will discuss the technical aspects of 16S sequencing from FFPE and autopsy material, and the issues surrounding its application to diagnosis in comparison with standard culture based diagnostics on surgical/autopsy material

    Mortality risks associated with empirical antibiotic activity in E. coli bacteraemia: an analysis of electronic health records

    Get PDF
    Background: Reported bacteraemia outcomes following inactive empirical antibiotics (based on in vitro testing) are conflicting, potentially reflecting heterogeneity in causative species, MIC breakpoints defining resistance/susceptibility, and times to rescue therapy. Methods: We investigated adult inpatients with Escherichia coli bacteraemia at Oxford University Hospitals, UK, from 4 February 2014 to 30 June 2021 who were receiving empirical amoxicillin/clavulanate with/without other antibiotics. We used Cox regression to analyse 30 day all-cause mortality by in vitro amoxicillin/clavulanate susceptibility (activity) using the EUCAST resistance breakpoint (>8/2 mg/L), categorical MIC, and a higher resistance breakpoint (>32/2 mg/L), adjusting for other antibiotic activity and confounders including comorbidities, vital signs and blood tests. Results: A total of 1720 E. coli bacteraemias (1626 patients) were treated with empirical amoxicillin/clavulanate. Thirty-day mortality was 193/1400 (14%) for any active baseline therapy and 52/320 (16%) for inactive baseline therapy (P = 0.17). With EUCAST breakpoints, there was no evidence that mortality differed for inactive versus active amoxicillin/clavulanate [adjusted HR (aHR) = 1.27 (95% CI 0.83–1.93); P = 0.28], nor of an association with active aminoglycoside (P = 0.93) or other active antibiotics (P = 0.18). Considering categorical amoxicillin/clavulanate MIC, MICs > 32/2 mg/L were associated with mortality [aHR = 1.85 versus MIC = 2/2 mg/L (95% CI 0.99–3.73); P = 0.054]. A higher resistance breakpoint (>32/2 mg/L) was independently associated with higher mortality [aHR = 1.82 (95% CI 1.07–3.10); P = 0.027], as were MICs > 32/2 mg/L with active empirical aminoglycosides [aHR = 2.34 (95% CI 1.40–3.89); P = 0.001], but not MICs > 32/2 mg/L with active non-aminoglycoside antibiotic(s) [aHR = 0.87 (95% CI 0.40–1.89); P = 0.72]. Conclusions: We found no evidence that EUCAST-defined amoxicillin/clavulanate resistance was associated with increased mortality, but a higher resistance breakpoint (MIC > 32/2 mg/L) was. Additional active baseline non-aminoglycoside antibiotics attenuated amoxicillin/clavulanate resistance-associated mortality, but aminoglycosides did not. Granular phenotyping and comparison with clinical outcomes may improve AMR breakpoints
    corecore